A Batch-mode Active Learning Method Based on the Nearest Average-class Distance (NACD) for Multiclass Brain-Computer Interfaces ?

نویسندگان

  • Minyou Chen
  • Xuemin Tan
  • John Q. Gan
  • Li Zhang
  • Wenjuan Jian
چکیده

In this paper, a novel batch-mode active learning method based on the nearest average-class distance (ALNACD) is proposed to solve multi-class problems with Linear Discriminate Analysis (LDA) classifiers. Using the Nearest Average-class Distance (NACD) query function, the ALNACD algorithm selects a batch of most uncertain samples from unlabeled data to improve gradually pre-trained classifiers’ performance. As our method only needs a small set of labeled samples to train initial classifiers, it is very useful in applications like Brain-computer Interface (BCI) design. To verify the effectiveness of the proposed ALNACD method, we test the ALNACD algorithm on the Dataset 2a of BCI Competition IV. The test results show that the ALNACD algorithm offers similar classification results using less sample labeling effort than Random Sampling (RS) method. It also provides competitive results compared with active Support Vector Machine (active SVM), but uses less time than the active SVM in terms of the training.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNN Based Batch Mode Active Learning Framework

Active Learning has been applied in many real world classification tasks to reduce the amount of labeled data required for training a classifier. However most of the existing active learning strategies select only a single sample for labeling by the oracle in every iteration. This results in retraining the classifier after each sample is added which is quite computationally expensive. Also many...

متن کامل

Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface

User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...

متن کامل

Adaptive Multiclass Classification for Brain Computer Interfaces

We consider the problem of multiclass adaptive classification for brain-computer interfaces and propose the use of multiclass pooled mean linear discriminant analysis (MPMLDA), a multiclass generalization of the adaptation rule introduced by Vidaurre, Kawanabe, von Bünau, Blankertz, and Müller (2010) for the binary class setting. Using publicly available EEG data sets and tangent space mapping ...

متن کامل

Active Learning based on Random Forest and Its Application to Terrain Classification

In the machine learning literature many supervised algorithms have been proposed to perform pattern classification tasks. But in many pattern recognition tasks, labels are often expensive to obtain while a vast amount of unlabeled data are easily available. And redundant samples are often included in the training set, thus slowing down the training process of the classifier without improving cl...

متن کامل

A cluster-assumption based batch mode active learning technique

In this paper, we propose an active learning technique for solving multiclass problems with support vector machine (SVM) classifiers. The technique is based on both uncertainty and diversity criteria. The uncertainty criterion is implemented by analyzing the one-dimensional output space of the SVM classifier. A simple histogram thresholding algorithm is used to find out the low density region i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014